augmentedtree
Release 0.0a1

May 25, 2020

Contents:

1 Installation

2 Purpose of augmentedtree

3 Limitations

3.1 Basic Usage Examples
Basic behavior of AnAugmentedTreeltem
The nested exemplary data
Examples on how to
Working with selections
Viewing treeitems
Sorting tree item selections
3.2 Usage of augmentedtree - detailed examples
Accessing values - “Where did I put it again?’
Usage of Schemas - Getting a quick view on the relevant values
Use-case of the or-conditional selection

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

3.2.1
322
323

3.3 An-augmented-Tree-Item

3.3.1
332
333
334

3.4 package

34.1
342
343
344

Index

Value (& Sequence)
Mappingso
Schemas
Paths within the augmentation

Augmented tree items

Selecting values

Enhancement of Mappings by schemas

Tree path related

augmentedtree, Release 0.0a1

augmentedtree enhances mappings and sequences (targeted for python dictionaries and lists) preserving their native
behavior and access. The enhancement comes with getting values by single keys, human readable viewing, selecting
and setting multiple values/items within the nested data at once, or-conditional selection of values/items. Also this
package intends to prepare the nested data for pyQt. The augmentation provides methods and properties to be used for
a QAbstractltemModel showing the nested data within a QTreeView.

Contents: 1

augmentedtree, Release 0.0a1

2 Contents:

CHAPTER 1

Installation

Installing the latest release using pip is recommended.

’$ pip install augmentedtree

The latest development state can be obtained from gitlab using pip.

’$ pip install git+https://gitlab.com/david.scheliga/augmentedtree.git@dev

augmentedtree, Release 0.0a1

4 Chapter 1. Installation

CHAPTER 2

Purpose of augmentedtree

The main purpose of this package is enhance nested data structure (mostly nested dictionaries) by keeping its func-

tionality for methods working with these data types.

The targeted usage is to be able to write the following kind of code

code where the nested data comes from

gathering parameters
with AugmentedTree (nested_data) as tree:
simple selection

first_value = tree.select ("something", "here™) [0]
last_value = tree.select ("something", "there") [-1]
a_slice_of_values = tree.select ("a", "12t", "of")[3:6]

selection with refinement
selection_of_values = tree.select ("also/a", "lot", "of")
narrowed_down = selection_of_values.where("this", "or", "that") [ALL_ITEMS]

if not tree.all_selections_succeeded:
break, exit or reacting to some value are not there

code which is working with requested parameters

augmentedtree, Release 0.0a1

6 Chapter 2. Purpose of augmentediree

CHAPTER 3

Limitations

The augmented tree items are directly forwarding the nested data. Practically objects implementing collec-
tions.abc.Sequence and collection.abc.Mapping should work with this package. Nevertheless:

* This package was developed with using list and dict. Other classes weren’t tested yet.

» Keep in mind that inserting new items directly into the nested data will mess up the augmentation. If AnAug-
mentedTreeltem should keep track of new items usage of this layer is mandatory.

The development status is alpha.
* Changes will come.
* Definition of types for fields in MappingTreeltem will be implemented.

¢ Selection items will be reworked. (SPARQL support is a desirable option.)

3.1 Basic Usage Examples

After a short example about the basic behavior of AnAugmentedTreeltem (for more details) examples will show how
to

e Select items,
» working with these selections

¢ and viewing them afterwards.

3.1.1 Basic behavior of AnAugmentedTreeltem

An ‘augmented’ dictionary or sequence will keep their native behavior, due to the goal of augmentedtree to not interfere
with other python modules/packages working with native python mappings and sequences. AnAugmentedTreeltem
enhances the nested data.

Accessing AnAugmentedTreeltem by index will return the nested data on basis of its augmented path.

[105]:

[106]:

[107]:

augmentedtree, Release 0.0a1

from augmentedtree import AugmentedTree

nested_data = {"a": 1,
atree =
print (atree(["a"],
print (atree["b"],

print (atree["c"],

1 <class 'int'>
[1, 2, 3] <class 'list'>
{'d': 3} <class 'dict'>

"H"e.

AugmentedTree (nested_data)
type (atree|
type (atree["D"
type (atree|

Mappings and sequences can be used like before.

print (atree["a"])
print (atree["b"]1[1])
print (atree["c"]["d"])

3.1.2 The nested exemplary data

Within the following examples this nested data will be used.

nested_data = {

A" {
"p1". {
L eN LN {"Xll":
noon. {"Xlz":
"e3n. {"Xl?}":
}
"’BZ": {
L eN LN {"Xll":
oo, {"X12":
by
"p3". {
L eN L {"Xll":
}
by
AT, {
"BI1". {
L eN LN {"Xll":
noomn. {"X12":
"oc3n. {"X13"I

[1, 2, 3], "c": {"d": 3}}
"a"J))
1))

"C"J))
11, "x21": 21, "x31": 31},
12, "x22": 22},
13},
110, "x21": 210, "x31": 310},
120, "x22": 220},
1100, "x21": 2100, "x31": 3100}
211, "x21": 221, "x31": 231},
212, "x22": 222},
213},

3.1.3 Examples on how to

Access values using select

Chapter 3.

Limitations

augmentedtree, Release 0.0a1

Selecting items by using a single key.

[108]: atree = AugmentedTree (nested_data)
all x12 items = atree.select ("x12")
all x12_items.print ()

#0 12
#1 120
#2 212

Selecting items by using multiple keys.

Keys needs to be in order of their occurrence within the desired items augmented path.

[109]: atree = AugmentedTree (nested_data)
all_x12_items_at_A2 = atree.select ("A2", "x12")
all_x12_items_at_A2.print ()

#0 212

[110]: not_working = atree.select ("x12", "A2")
print ("Returning nothing", not_working[:])

Returning nothing []

Selecting using UNIX wildcards

A selection using the well known and beloved UNIX filename search pattern is supported.

Using the questionmark

[111]: atree = AugmentedTree (nested_data)
allitems_having_a_leading_ 1 = atree.select ("x1?")
allitems_having_a_leading_1l.treeitems.print ()

#0 /Al/B1l/Cl/x11
11

#1 /A1/Bl/C2/x12
12

#2 /A1/B1/C3/x13
13

#3 /Al/B2/Cl/x11
110

#4 /A1/B2/C2/x12
120

#5 /A1/B3/Cl/x11
1100

#6 /A2/B1l/Cl/x11
211

#7 /A2/B1/C2/x12
212

#8 /A2/B1/C3/x13
213

3.1. Basic Usage Examples 9

augmentedtree, Release 0.0a1

Using a range of humbers

Using a range of humbers

[112]: allitems_having_only_1_and_3 = atree.select ("x[13][13]")
allitems_having_only_1_and_3.treeitems.print ()

#0 /Al/B1/Cl/x11
11

#1 /Al/B1/C1l/x31
31

#2 /A1/B1/C3/x13
13

#3 /A1/B2/Cl/x11
110

#4 /Al/B2/Cl/x31
310

#5 /A1/B3/C1l/x11
1100

#6 /A1/B3/Cl/x31
3100

#7 /A2/B1l/Cl/x11
211

#8 /A2/B1/C1l/x31
231

#9 /A2/B1/C3/x13
213

Getting all unknown items of a specific item

new in release 0.2a0

Using a path delimiter with a trailing single asterisk wildcard “/*” selects only items at that level, instead of all sub
items (default).

[113]: all_next_level_subitems_of_ b2 = atree.select ("B2/x")
all_next_level_subitems_of_Db2.treeitems.print ()

#0 /Al/B2/Cl

Cl:
x11: 110
x21: 210
x31: 310

#1 /Al1/B2/C2
C2:

x12: 120

x22: 220

If the star * wildcard is used as a stand-alone path part, it will return all sub tree item from its root(s).

[114]: all_subitems_of_b2 = atree.select ("B2", "«")
all subitems_of_b2.treeitems.print ()

10 Chapter 3. Limitations

[115]:

[116]:

augmentedtree, Release 0.0a1

#0 /Al/B2/C1

Cl:
x11: 110
x21: 210
x31: 310

#1 /A1/B2/Cl/x11

110
#2 /A1/B2/C1l/x21
210
#3 /A1/B2/C1l/x31
310
#4 /Al1/B2/C2
C2:
x12: 120
x22: 220

#5 /Al/B2/C2/x12
120

#6 /A1/B2/C2/x22
220

Selecting using regular expression

With regular expression a powerful tool for selection is available.

from augmentedtree import RegularExpressionParts as REPs
allitems_having_only_1 = atree.select (REPs ("x[1] "))
allitems_having only_1l.treeitems.print ()

#0 /Al1/B1/Cl/x11
11

#1 /A1/B2/Cl/x11
110

#2 /A1/B3/Cl/x11
1100

#3 /A2/B1/Cl/x11
211

Select with Or condition

Wrapping multiple of path parts with a tuple, a list, an UnixFilePatternPart or a RegularExpressionPart makes these
parts behave like an or condition in between them.

SeleCt("A", ("BH, IICH) , HD")
is equal to
A and (B or C) and D

from augmentedtree import RegularExpressionParts as REPs
all _x11_items_of Bl _or_Y1l = atree.select (REPs("B1", "Y1"), "x11")
all_x11 items_of Bl _or_Yl.treeitems.print ()

3.1. Basic Usage Examples 11

augmentedtree, Release 0.0a1

#0 /Al1/B1/Cl/x11
11

#1 /A2/B1/Cl/x11
211

3.1.4 Working with selections
Accessing single items

[117]: atree = AugmentedTree (nested_data)
all x12 items = atree.select ("x12")
second_found_value = all_x12_items[1]
print (second_found_value)

120

[118]: second_item = all_x12_items.treeitems[1]
print (second_item)

ValueTreeltem(x12: 120)

Accessing slices

Selections can be accessed using slices. For a better readability of scripts AugmentedTree.ALL_ITEMS can be used.

[119]: from augmentedtree import ALL_ITEMS

atree = AugmentedTree (nested_data)
all_x12_ items = atree.select ("x12")
all values = all _x12_ items[ALL_ITEMS]
print (all_values)

[12, 120, 212]

[120]: all_except_last = all_x12_items[:-1]
print (all_except_last)

[12, 120]

Setting multiple values at different locations at once

[121]: from copy import deepcopy
temp_nested_data = deepcopy (nested_data)
atree = AugmentedTree (temp_nested_data)

Select items
all_x11_items = atree.select ("x11")

Set all items to a new values
all_x11 items[ALL_ITEMS] = "My key is x11."

atree.print ()

12 Chapter 3. Limitations

https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html

augmentedtree, Release 0.0a1

Al:

Bl:
Cl:
x11l: My key is x11.
x21: 21
x31: 31
C2:
x12: 12
x22: 22
C3:
x13: 13
B2:
Cl:
x11l: My key 1is x11.
x21: 210
x31: 310
C2:
x12: 120
x22: 220
B3:
Cl:
x11l: My key is x11.
x21: 2100
x31: 3100
A2:
Bl:
Cl:
x11l: My key is x11.
x21: 221
x31: 231
C2:
x12: 212
xX22: 222
C3:
x13: 213

[122]: all_x11_items[1l:3] = "A value set by using slicing."

atree.print ()

{..}
Al:
Bl:
Cl:

x11:
x21:
x31:

C2:

x12:
xX22:

C3:

x13:

B2:
Cl:

x11:

My key 1is x11.
21
31

12
22

13

A value set by using slicing.

(continues on next page)

3.1. Basic Usage Examples

13

[123]:

[124]:

augmentedtree, Release 0.0a1

(continued from previous page)

x21: 210
x31: 310
C2:
x12: 120
x22: 220
B3:
Cl:
x11l: A value set by using slicing.
x21: 2100
x31: 3100
A2:
Bl:
Cl:
x11l: My key 1is x11.
x21: 221
x31: 231
C2:
x12: 212
xX22: 222
C3:
x13: 213

3.1.5 Viewing treeitems

AnAugmentedTreeltem will give you a different output in whether you use print (treeitem) or treeitem.
print ().

The standard output resembles the nested data wrapped by AnAugmentedTreeltem. An exception is a ValueTreeltem
in which its key (primekey) is also print out for more convenience.

root_level = {
"ridiculous-level": {
"ludicrous—-level": "They've gone into plaid."

spacetree = AugmentedTree (root_level)

ridiculous_item = spacetree.children["ridiculous-level"]
ludicrous_item = ridiculous_item.children["ludicrous—level"]
print (spacetree)

print (ridiculous_item)

print (ludicrous_item)

AugmentedTree ({'ridiculous-level': {'ludicrous-level': "They've gone into plaid."}})
MappingTreelItem({'ludicrous-level': "They've gone into plaid."})
ValueTreeltem(ludicrous—-level: They've gone into plaid.)

Using AnAgumentedTreeltem’s print method gives a different output.

print ("# spacetree")
spacetree.print ()

print ("# ridiculous_treeitem")
ridiculous_item.print ()

print ("# ludicrous_treeitem")
ludicrous_item.print ()

14 Chapter 3. Limitations

augmentedtree, Release 0.0a1

spacetree
{..}
ridiculous-level:
ludicrous-level: They've gone into plaid.

ridiculous_treeitem
ridiculous-level:
ludicrous—-level: They've gone into plaid.

ludicrous_treeitem
They've gone into plaid.

3.1.6 Sorting tree item selections

new in release 0.2a0

The main purpose of the sor-method is to sort selections. If the nested data should be sorted, its more efficient to
use specific packages and re-augment the sorted result. In many cases a sorted result of a selection is desired.

Tree items can be sorted using the sort method of AugmentedTreeltem or AugmentedltemSelection. By default the tree
items are sorted in regard of their augmented_path.

The current implementation does not sort the nested data itself. It sorts the tree items. It can be compared to a
reorganized view, while the original data keeps its order.

Exemplary behavior

This example shows a simple nested structure with 6 leafs.

[125]: from augmentedtree import AugmentedTree

data = {

"b": {
Ua=1%g 1,
"b-1": 2

}I

"all: {
"a-2": 3,
"a-13": 4,
Uo=2"g 5,
"b-13": 6,

a_tree = AugmentedTree (data)
a_tree.print ()

{..}

b:
a-1: 1
b-1: 2
a:
a-2: 3
a-13: 4
b-2: 5

(continues on next page)

3.1. Basic Usage Examples 15

augmentedtree, Release 0.0a1

(continued from previous page)

The tree items inherits the order of the given structure.

[126]: a_tree.treeitems.print ()

#0 /
b:
a-1: 1
b-1: 2
#1 /b/a-1
1
#2 /b/b-1
2
#3 /a
a:

#4 /a/a-2
3

#5 /a/a-13
4

#6 /a/b-2
5

#7 /a/b-13
6

Sorting the tree affects the global order of the tree items, but not the local order or the nested data itself.

[127]: sorting_tree = a_tree.sort ()
sorting_tree.print ()

a-1: 1
b-1: 2
a:
a-2: 3
a-13: 4
b-2: 5
b-13: 6
[128]: sorting_tree.treeitems.print ()
#0 /a
a:
a-2: 3
a-13: 4
b-2: 5
b-13: 6
#1 /a/a-13

(continues on next page)

16 Chapter 3. Limitations

[129]:

[130]:

augmentedtree, Release 0.0a1

(continued from previous page)

4

#2 /a/a-2
3

#3 /a/b-13
6

#4 /a/b-2
5

#5 /
b:

#6 /b/a-1
1

#7 /b/b-1
2

Basic usage of sorting

The main purpose is to sort selections. The default sorting order is based on the augmented path.

all_bees = a_tree.select ("b—*") .sort ()
all_bees.treeitems.print ()

#0 /a/b-13
6

#1 /a/b-2
5

#2 /b/b-1
2

A different sorting order might be desired, which can be achieved using the Callable[[PathMapltem], int] interface.

from augmentedtree.treeitemselection import PathMapItem

def sort_by_ trailing_item_number (path_map_item: PathMapItem) -> int:
number_characters = path_map_item.primekey.split ("-") [1]
try:
return int (number_characters)
except TypeError:
return 0

all_bees = a_tree.select ("b—*") .sort (sorting _method=sort_by_trailing_item_number)
all_bees.treeitems.print ()

#0 /b/b-1
2

#1 /a/b-2
5

#2 /a/b-13
6

3.1. Basic Usage Examples 17

augmentedtree, Release 0.0a1

3.2 Usage of augmentedtree - detailed examples

This chapter shows more detailed examples than within the chapter Basic Usage. These simplified examples are taken
from existing projects and resembles the major issues augmentedtree was written for.

Accessing values - Example on how to retrieve nested values. - Using the nested example data - items are selected
using a single key. - Refining the selection retrieves exact values.

Usage of Schemas™ - Getting a quick view on the relevant (by your definition) values. - How to define schemas -
How the data looks without schemas - How the data looks with schemas - How schemas effect selecting items

Use-case of the *or*-conditional selection in combination with setting multiple values.

3.2.1 Accessing values - ‘Where did | put it again?’

Did you ever wondered ‘Where did i put it?”? You were about to write an analysis script and put the configuration
values into a JSON dump beforehand by another preliminary process. Or you can’t remember the structure of the
nested output and its key names?

Nested example data

The exemplary data can be found within a json-file.

import json
from dicthandling import read_from_ json_file

load and show the nested data
nested_data
—example-1")

print (json.dumps (nested_data, indent=" "))

{

= read_from_json_file ("resources/nested_data_of_examples.json",

"section-name": {
"7Th3-P4r7-YO0u-C4n7-R3m-3mb3r": {

"metatype": "my-man",

"type" .

"worker",

"metadata-1": 24,
"metadata-2": "value needed for a function",
"name-of-this-item": "Gerry",
"tasks": {
"class": "TaskCollection",
"description": "Tasks 'Gerry' should do.",
"items": [

{

"metatype": "task",

"class": "WorkerTask",

"name": "prepare-task",
"arg-1": "Not this one.",
"arg-2": "Not this one either."

"metatype": "task_of_gerry",
"class": "WorkerTask",
"name": "get-cracking",
"arg-1": "This one you want."

"detailed/

(continues on next page)

18

Chapter 3. Limitations

resources/nested_data_of_examples.json

augmentedtree, Release 0.0a1

(continued from previous page)

]
}I
"another-parameter": [
lr
2!
3

by
"etc.": ".L"

Selecting specific items
In this example all items with a key arg-1 are selected using select (xpath_parts). The desired value can be
obtained by knowing the item’s index.

from augmentedtree import AugmentedTree, ALL_ITEMS

augment the nested data
atree = AugmentedTree (nested_data)

get a selection of all items with the key 'arg-1'
taskargl_selection = atree.select ("arg-1")

take a look on the selected items using the explicit print method of
the selection
taskargl_selection.print ()

in this example get all values from the selection using a slice (ALL_ITEMS)
equivalent to [:] (using ALL ITEMS makes the code more understandable)
taskargl_of_alltasks = taskargl_selection[ALL_ITEMS]

here it is known the desired arg-1 is at the end.
taskargl_of_getcracking = taskargl_of_alltasks[-1]

print ("\narg-1 of 'get-cracking': {}".format (taskargl_of_getcracking))

#0 Not this one.
#1 This one you want.

arg-1l of 'get-cracking': This one you want.

Refining the selection

In the prior example knowledge of the items occurrence is required to obtain the desired value. In cases where you
don’t know the position of the item a refinement of the selection comes handy. Exact values/items can be retrieved
using where (spath_parts).

argl_selection = atree.select ("arg-1")
here: using 'where' on the prior made selection returns only one value
crackpoint = argl_selection.where ("get-cracking")

crackpoint.print ()
(continues on next page)

3.2. Usage of augmentediree - detailed examples 19

augmentedtree, Release 0.0a1

(continued from previous page)

which can be accessed using the first index
taskargl_of_getcracking = crackpoint[0]

print ("\narg-1 of 'get-cracking': ".format (taskargl_of_getcracking))

#0 This one you want.

arg-1 of 'get-cracking': This one you want.

3.2.2 Usage of Schemas - Getting a quick view on the relevant values

With schemas a more semantic like behavior can be applied to the nested data. Schemas are defined using dictionaries
and it planned to implement JSON-schemas.

Interpretation of metadata within this package

By using schemas values can be classified as metadata. In this context values are classified as metadata
« if these values are not essential for the impression of your data, therefore can be hidden from the view.

* Additional not essential values which can be understood as attributes of an entity. These will be used selecting
values by where.

* Besides attributes there can be data, which is not directly related for the entity but is used for process control.
E.g. an unique identifier generated at runtime.

The distinction is based on your interpretation. What do you want to tell the viewer?

Example: A blue tennis ball will be enough data for the majority to depict such an object. Since the default color of
tennis balls is yellow, the color blue in that case is essential to forward this information, to make the deviation of the
standard clear. Diameter, mass, manufacturer, production date, etc. are additional attributes of a tennis ball, but are
needed for specific occasions only. (‘“Pass me the blue ACME tennis ball, which was made before 2020.02.02”). An
‘runtime metadata’ of a tennis ball is the store’s article number for the cashier system.

Using schemas

Schemas are defined by a dictionary with specific entries. The recommend way to define a schema is by using the
construct-method of MappingSchemaBuilder. For further explanation see the section Schemas.

schema = MappingSchemaBuilder.construct (
identifier=("key-within-the-target-mapping", "identifier"),
primarykey="key-which-value-is-used-as-primekey",
primaryname="key-which-value-is—-used-as—primename",
additional_metafieldkeys=["keys", "treadend", "as", "metadata"]

In the example below three schemas are used for the nested data, giving the output a different meaning.

Schemas have to be explicitly defined for usage using the use_MappingSchema_schema () method.

20 Chapter 3. Limitations

https://json-schema.org/

augmentedtree, Release 0.0a1

from augmentedtree import MappingSchema, use_mappingtree_schemas, MappingSchemaBuilder

schemas_as_kwargs = read_from_json_file(
"resources/nested_data_of_examples. json",
"detailed/example—-1-schemas"

)

schemas = MappingSchemaBuilder.construct_from_collection (schemas_as_kwargs)

How an example schema definition looks like.
GERRY_SCHEMA = ({
MappingSchema.IDENTIFIER: ("metatype", "my-man"),
MappingSchema.PRIMARYKEY: "type",
MappingSchema.PRIMARYNAME: "name-of-this-item",
MappingSchema .METAFIELDKEYS: [
"metatype",
"type",
"name-of-this-item",
"metadata-1",
"metadata-2"

use_mappingtree_schemas (GERRY_SCHEMA, =xschemas)

Representation without schemas

This output shows the nested data in its ‘natural’ occurrence.

tree_like_it_is AugmentedTree (nested_data, use_schemas=False)
tree_like_it_is.print ()

{..}
section-name:
Th3-P4r7-Y0u-C4n7-R3m-3mb3r:
metatype: my-man
type: worker
metadata-1: 24
metadata—-2: value needed for a function
name-of-this-item: Gerry
tasks:
class: TaskCollection
description: Tasks 'Gerry' should do.
items:
0.
metatype: task
class: WorkerTask
name: prepare-task
arg-1l: Not this one.
arg-2: Not this one either.

metatype: task_of_gerry

class: WorkerTask

name: get-cracking

arg-1l: This one you want.
another-parameter: [1, 2, 3]

(continues on next page)

3.2. Usage of augmentediree - detailed examples 21

augmentedtree, Release 0.0a1

(continued from previous page)

etc.:

Representation using schemas

Using schemas can reduce the needed vertical space and increase readability.

tree_using_schemas = AugmentedTree (nested_data)
tree_using_schemas.print ()

{..}
section-name:
worker: Gerry
tasks: Tasks 'Gerry' should do.
prepare-task: WorkerTask
arg-1l: Not this one.
arg-2: Not this one either.
get-cracking: WorkerTask
arg-1l: This one you want.
another-parameter: [1, 2, 3]
etc.:

Impact of schemas on selecting items

Using schemas also makes selecting items more natural to he user.

atree = AugmentedTree (nested_data)

get a selection of all 'arg-1' items with 'get-cracking' in the path
taskargl_of_getcracking = tree_using_schemas.select ("get-cracking", "arg-1")

taskargl_of_getcracking.print ()

#0 This one you want.

Schemas can be redefined setting the override_existing parameter of use_MappingSchema_schema to True. In the
following example the field arg-1 is added to the metadata and will be hidden from the standard view (compare to
prior output above). Metadata can be additionally listed using the additional_columns parameter of the tree item’s
print-method.

TASK_SCHEMA = MappingSchemaBuilder.construct (
identifier=("class", "WorkerTask"),
primarykey="name",

primaryname="class",
additional_metafieldkeys=["metatype", "arg-1"]

use_mappingtree_schemas (TASK_SCHEMA, override_existing=True)

tree_using_schemas = AugmentedTree (nested_data)
tree_using_schemas.print (additional_columns=["Garg-1", "arg-2"])

22 Chapter 3. Limitations

augmentedtree, Release 0.0a1

@arg-1 arg-2

{..} ! !
section—name: ! !
worker: Gerry ! !
tasks: Tasks 'Gerry' should do. ' '

prepare-task: WorkerTask ' Not this one. ' Not this one either.

arg-2: Not this one either. ' Not this one. ' Not this one either.
get—-cracking: WorkerTask ' This one you want. '

another-parameter: [1, 2, 3] ! '
etc.: ... ! '

3.2.3 Use-case of the or-conditional selection

The next example combines the ‘usage of schemas’ for shortening the view, and setting multiple values at once, where
a specific set of values need to be changed.

Here some script went wrong. After the ‘bug’ was fixed and a lot of job files has to be ‘reset’ to a specific configuration.

The nested data is a broadly simplified example. It consists of a list with 4 dictionaries resembling what could be
simple task definitions.

from augmentedtree import use_mappingtree_schemas, AugmentedTree, MappingSchema, ALL_
— ITEMS
from dicthandling import read_from_ json_file

task_list = read_from json_file("resources/nested_data_of_examples.json", address=
—~"detailed/tasklist")

import json

print (json.dumps (task_list, indent=" "))

[

"metatype": "task",
"state": "done",
"args": "bread",

"task": "buy"

"metatype": "task",
"state": "done",
"args": "bread",
"task": "take a slice of"
}I
{
"metatype": "task",
"state": "done",
"args": "sandwich",
"task": "prepare"
}I
{
"metatype": "task",
"state": "failed",
"args": "sandwich",
"task": "eat"

(continues on next page)

3.2. Usage of augmentediree - detailed examples 23

[107]:

[117]:

augmentedtree, Release 0.0a1

(continued from previous page)

By using schemas the meaning is be made easier to read and needed vertical space shortened.

schema_parameters = read_from_json_file ("resources/nested_data_of_examples.json",
—address="detailed/tasklist—-schemas")
schemas = MappingSchemaBuilder.construct_from_collection (schema_parameters)

use_mappingtree_schemas (*schemas)

task_tree = AugmentedTree (task_list)
task_tree.print ()

[..]

buy. bread
state: done

take a slice of. bread
state: done

prepare. sandwich
state: done

eat. sandwich
state: failed

Now we get to part, where we want to reset 3 specific tasks, because the first task doesn’t need to be repeated. After
the selection using the ‘or’ condition for the first path part, we check if the selection returned something.

tasks_to_repeat = task_tree.select (("take", "prepare", "eat"), "state")
tasks_to_repeat [ALL_ITEMS] = "to-do"

task_tree.print ()

[..]

buy. bread
state: done

take a slice of. bread
state: to-do

prepare. sandwich
state: to-do

eat. sandwich
state: to-do

3.3 An-augmented-Tree-ltem

There are 3 basic types of tree items derived from the abstract base class AnAugmentedTreeItem. These 3 tree
items represent values, sequences and mappings.

The following example shows nested data and the ‘augmented’ view on it. A tree item has always a primekey.
Using schemas this primekey doesn’t necessarily need to be equal to the real index/key within the nested data. The
primename is just an association for the tree item. The primevalue of the tree item referees to the nested data the tree
item is attached to. So the primevalue of the root tree item always shows the complete nested data.

24 Chapter 3. Limitations

augmentedtree, Release 0.0a1

: from augmentedtree import AugmentedTree, PRIMARYVALUE_KEY

import json
nested_data = [{"al": 1}, {"a2": 2, "a3": [3, 4, 51, }]

pretty_printed_data = json.dumps (nested_data, indent=" ")
print (pretty_printed_data)

[
{
"al": 1
}I
{
"az2": 2,
"a3": |
3/
4,
5

Above is a pretty print using json.dumps showing the how the nested data looks like.

The nested data within a 3 column view (primekey, primename) with primevalue (the data of AnAugmentedTreeltem)
as an additional column.

: tree = AugmentedTree (nested_data)

tree.print (additional_columns=[PRIMARYVALUE_KEY])

Primevalue
[..] "' [{'al': 1}, {'a2': 2, 'a3': [3, 4, 51}]
0. ' {ral': 1}
al: 1 'l
1 ' {'a2': 2, 'a3' [3, 4, 5]}
az: 2 ' 2
a3: [3, 4, 51 ' [3, 4, 5]

3.3.1 Value (& Sequence)

A value tree item is being considered any type not being a Mapping.

Sequences will be treated as a value if they do not possess a Mapping. A SequenceTreeltem will behave like a
Sequence.

3.3.2 Mappings

The items of a Mapping can be divided into 2 groups. Values which should be shown and metadata which will be
hidden. There are 2 possibilities to define this behavior.
Flat Mapping item

A flat mapping item has its values and metadata within the same level.

3.3. An-augmented-Tree-ltem 25

augmentedtree, Release 0.0a1

[3]: from augmentedtree import MappingSchemaBuilder, AugmentedTree, use_mappingtree_schemas

flat_pizza = {

"type": "flat-pizza",
"name": "Salami",
"number": 62,

"tomato sauce": "1 scoop",
"cheese": "A lot",
"salami": "6 slices",

"allergens": [10, 17, 24]

schema = MappingSchemaBuilder.construct (
identifier=("type", "flat-pizza"),
primarykey="type",
primaryname="name",
additional_metafieldkeys=["allergens", "number"]

use_mappingtree_schemas (schema)

AugmentedTree (flat_pizza) .print ()

flat-pizza Salami
tomato sauce: 1 scoop
cheese: A lot
salami: 6 slices

Nested Mapping item

A nested mapping item has is values within a additional level. Metadata is at the root level of this item. This ‘rootlevel’
is skipped in the view.

[4]: nested_pizza = {

"type": "nested-pizza",

"name": "Salami",

"number": 62,

"ingredients": {
"tomato sauce": "1 scoop",
"cheese": "A lot",
"salami": "6 slices",

by
"allergens": [10, 17, 24]

schema = MappingSchemaBuilder.construct (
identifier=("type", "nested-pizza"),
primarykey="type",
primaryname="name",
outervalues_key="ingredients"

use_mappingtree_schemas (schema)

AugmentedTree (nested_pizza) .print ()

nested-pizza Salami

tomato sauce: 1 scoop
(continues on next page)

26 Chapter 3. Limitations

augmentedtree, Release 0.0a1

(continued from previous page)

cheese: A lot
salami: 6 slices

3.3.3 Schemas

Schemas are the essential tool to give mapping a more semantic like view. Any dictionary containing the right
set of keys of MappingSchema can be used as a schema. IDENTIFIER of MappingSchema is mandatory. Either
METAFIELDKEYS or OUTERVALUES are required additionally. OUTERVALUES always overrules METAFIELD-
KEYS.

All other entries are optional and do have impact on the representation within the view, which will be shown in the
following examples, starting with the ‘flat-pizza’ from above.

Overriding default metafieldkey definition keeps the identifier visible.

schema = MappingSchemaBuilder.construct (
identifier=("type", "flat-pizza"),
metafieldkeys=["number", "allergens"]

)

use_mappingtree_schemas (schema, override_existing=True)

AugmentedTree (flat_pizza) .print ()

{..}
type: flat-pizza
name: Salami
tomato sauce: 1 scoop
cheese: A lot
salami: 6 slices

Adding metafieldkeys to the defaults hides the identifier.

schema = MappingSchemaBuilder.construct (
identifier=("type", "flat-pizza"),
additional_metafieldkeys=["number", "allergens"]

)

use_mappingtree_schemas (schema, override_existing=True)

AugmentedTree (flat_pizza) .print ()

{..}
name: Salami
tomato sauce: 1 scoop
cheese: A lot
salami: 6 slices

Supplied primarykey and primaryname are default metadatakeys hiding both items automatically.

schema = MappingSchemaBuilder.construct (
identifier=("type", "flat-pizza"),
primarykey="type",
primaryname="name",
additional_metafieldkeys=["number", "allergens"]

)

use_mappingtree_schemas (schema, override_existing=True)

AugmentedTree (flat_pizza) .print ()

3.3. An-augmented-Tree-ltem 27

augmentedtree, Release 0.0a1

flat-pizza Salami
tomato sauce: 1 scoop
cheese: A lot
salami: 6 slices

Outervalues overrules metadatakeys. If an item of a mapping is defined to represent the real values (or children) of
this collection, then automatically all root level items of this mapping are rendered to metadata.

schema = MappingSchemaBuilder.construct (
identifier=("type", "nested-pizza"),
metafieldkeys=["these", "are", "now", "irrelevant"],
outervalues_key="ingredients"

)

use_mappingtree_schemas (schema, override_existing=True)

AugmentedTree (nested_pizza) .print (additional_columns=["@name", "@allergens"])

@name @allergens

{..1} ' Salami ' [10, 17, 24]
tomato sauce: 1 scoop ' Salami ' [10, 17, 24]
cheese: A lot ' Salami ' [10, 17, 24]
salami: 6 slices ' Salami ' [10, 17, 24]

3.3.4 Paths within the augmentation

AnAugmentedTreeltem has 2 paths. It’s real path is the location within the original nested datastructure the tree items
are attached to. The tree item’s augmented path depicts the location within the augmentation changed by schemas.

from dicthandling import read_from_ json_file

get nested data and schema for the example
nested_data = read_from_json_file("resources/nested_data_of_examples.json", "AATI/
—path_example")

tree_without = AugmentedTree (nested_data, use_schemas=False)
tree_without.print ()

{..}

The story:
type: example
name: W.
key: Richard
items:

0.

type: example
name: steed
key: mighty
items:
0.
type: example
name: along
key: rides
items:
into: the sunset

28 Chapter 3. Limitations

[12]:

augmentedtree, Release 0.0a1

From the data above the last item with the primekey into is selected, the item’s TreePath retrieved and both real path
as well augmented path shown. Since no schemas were applied, both are identical.

real_and_augmented_path_is_identical = tree_without.select ("into")
items_treepath = real_and_augmented_path_is_identical.paths[0]

print (" real path:", items_treepath.real_path)
print ("augmented path:", items_treepath.augmented_path)

real path: /The story/items/0/items/0/items/into
augmented path: /The story/items/0/items/0/items/into

Now the whole process will be repeated, but this time a schema is applied to the nested data, resulting in a different
view off it. Both paths differs in this example, due to the schema.

The exemplary data can be found within a json-file.

schema_kwargs = read_from_json_file("resources/nested_data_of_examples. json", "AATI/
—path_example-schema")
example_schema = MappingSchemaBuilder.construct (xxschema_kwargs)

use_mappingtree_schemas (example_schema)

tree_with_schema = AugmentedTree (nested_data)
tree_with_schema.print ()

augmented_path_differs_from real = tree_with_schema.select ("into")
items_treepath = augmented_path_differs_from_real.paths[0]

print (" real path:", items_treepath.real_path)
print ("augmented path:", items_treepath.augmented_path)

{..}
Richard: W.
mighty: steed
rides: along
into: the sunset

real path: /The story/items/0/items/0/items/into
augmented path: /Richard/mighty/rides/into

Using the origin data and navigating through it
print (tree_with_schema["The story"]["items"][0] ["items"][0] ["items"] ["into"])

Using the augmented path
print (tree_with_schema["Richard/mighty/rides/into"])

the sunset
the sunset

3.4 package

3.4.1 Augmented tree items

3.4. package 29

resources/nested_data_of_examples.json

augmentedtree, Release 0.0a1

Abstract Base Classes

class augmentedtree.AnAugmentedTreeltem

Bases: abc .ABC

It is mandatory to implement this abstract basic class for any kind of augmented tree item. This class defines
the minimal, necessary set of properties and methods for a tree item within a two column tree view (like it is
presented using print_atree).

class augmentedtree.AnAugmentedCollection

Bases: augmentedtree.abstractbaseclasses.AnAugmentedTreeltem

In addition to AnAugmentedTreeltem a tree item resembling a sequence or mapping has to implement
getitem__, __setitem__ and outervalues.

Base tree item classes

class augmentedtree.ATreeItem (real_key=None, **kwargs)

Bases: augmentedtree.abstractbaseclasses.AnAugmentedTreeltem

ATreeltem set the entry point for subclassing AnAugmentedTreeltem for usage with augment_datastructure. It
also implements properties and methods for convenience. Properties and methods which has to be overwritten
will raise NotImplementedErrors.

Raises TypeError — This class cannot be instantiated directly. It has to be sub-classed.

children
Access to the children (tree items) this tree item possess. Also obligatory for a brasic QT implementation.

Returns
Sequence Sequence of AnAugmentedTreeltem

has_primekey (key: Union[int, str]) — bool
Returns it the tree item has a child with the requested key. Basic implementation for QT, where it’s called
hasKey().

Parameters key (Union[int, str])-—Requested key.
Returns bool

primekey
Represents the key this tree item is associated within its parent container. Also it is the first columns (left)
value within a 2-column view (like when using print_atree()).

Returns Union[int, str]

primename
Represents the value this tree item is associated with. Also it is the second columns (right) value within a
2-column view (like when using print_atree()).

Returns Any

primevalue
The ‘real’ value/nested data this tree item is representing.

Returns Any

real_key
The real key within the nested data.

Returns Union[int, str]

30

Chapter 3. Limitations

augmentedtree, Release 0.0a1

class augmentedtree.ACollectionTreeltem (primarykey: Union[augmentedtree.core.KeyLink,

st int] = None, primaryname:
Union[augmentedtree.core.KeyLink, str, int] =
None, primaryvalue: Union[Sequence[T co],

collections.abc.Mapping] = None, real_key: str =
None, **kwargs)
Bases: augmentedtree.abstractbaseclasses.AnAugmentedCollection,
augmentedtree.treeitems.ATreeltem

outervalues

Returns this tree items origin nested data, which is considered to represent this tree items values. These
doesn’t need to be identical to primevalue, but primevalue always contains the values visible to the outside.

Returns Any

Tree item classes

class augmentedtree.ValueTreeltem (primarykey=None, **metadata)
Bases: augmentedtree.treeitems.ATreeltem

class augmentedtree.SequenceTreeltem (primarykey=None, primaryname=None, primary-

value=None, real_key=None, **kwargs)
Bases: collections.abc.MutableSequence, augmentedtree.treeitems.
ACollectionTreeltem

class augmentedtree.MappingTreeItem (primarykey=None, primaryname=None, primary-
value=None, outervaluekey=None, metadatakeys=None,
real_key=None, field_types: Dict[str, Callable] = None,
meta_attributes=None, keypairs: dict = None)

Bases: collections.abc.Mapping, augmentedtree.treeitems.ACollectionTreeltem
class augmentedtree.AugmentedTree (data: Union[augmentedtree.abstractbaseclasses.AnAugmentedCollection,
Mapping[KT, VT _co], Sequence[T _co]],
use_schemas: bool = True, pathmap: augment-

edtree.treeitemselection. PathMap = None)
Bases: augmentedtree.abstractbaseclasses.AnAugmentedTreeltem

This class is the recommended entry for augmenting nested data.

Parameters

* data (Union[Mapping, Sequence])-— Augments this given data.

* use_schemas (bool) — As default registered schemas are used. If turned to false this
tree will represent the pure data structure.

augmentedtree.augment_datastructure (nested_data: Union[Sequence[T _co], Map-
ping[KT, VT _co]], parent: augment-
edtree.abstractbaseclasses.AnAugmentedCollection
= None, augmentclasses: Dict[str, augment-
edtree.abstractbaseclasses.AnAugmentedTreeltem]
= None, use_schemas: bool = True)
Augments nested data with AnAugmentedTreeltem.

Parameters

* nested_data (Union[Sequence, Mapping])— nested data to be augmented with
AnAugmentedTreeltem.

* parent (AnAugmentedCollection, optional)— parentof the given nested_data

3.4. package 31

augmentedtree, Release 0.0a1

* augmentclasses (Dict[str, AnAugmentedTreeltem], optional) -
AnAugmentedTreeltem-classes to be used for augmentation

* use_schemas (bool, optional) - Defines whether schemas should be used or not.
Default = True; schemas are used.

Returns AnAugmentedTreeltem

augmentedtree.print_atree (treeitem: augmentedtree.abstractbaseclasses.AnAugmentedTreeltem,
additional_columns: List[T] = None, show_hidden=Fualse, indent="",
prefix="")

Pretty prints a tree in a simple manner.

Notes
« if the item is within a Sequence the separator between primekey and primename will be a dot ‘.’; else a
colon ‘’
* by using schemas the default indexing by integers of Sequences can be changed to key-names of a Map-
ping.
Parameters
* treeitem (AnAugmentedTreeltem)— Tree item to be printed.
e additional_columns (str)— Additional columns which should be shown.
* show_hidden (bool) - If True leading underline keys will be shown. Default = False
* indent (str) - Indentation characters which will be used.
* prefix (str)— Additional string with which line begins.

class augmentedtree.LeafType
An enumeration.

3.4.2 Selecting values

By default the methods select () and where () of AugmentedTree and AugmentedItemSelection inter-
prets any given path component as an UNIX file pattern. To use regular expressions instead, these path components
can be wrapped with ReqularExpressionPart.

class augmentedtree.RegularExpressionPart

class augmentedtree.AugmentedItemSelection (data: Union[augmentedtree.abstractbaseclasses.AnAugmentedCollecti
Mapping[KT, VT_co], Sequence[T _co]],
use_schemas: bool = True, pathmap: Op-
tional{augmentedtree.treeitemselection. PathMap |

= None)
Bases: augmentedtree.tree.AugmentedTree

3.4.3 Enhancement of Mappings by schemas

augmentedtree.use_mappingtree_schema (schema: Dict{KT, VT], override_existing: bool =

False)
Registers a (JSON-)schema for a MappingTreeltem for global use.

Raises ValueError — If a schema with the same identifier is already registered.

32 Chapter 3. Limitations

augmentedtree, Release 0.0a1

Parameters
* schema (Dict)— (JSON-)schema to be registered.

* override_existing (bool)—If True and existing registered schema with the same id
will be overridden.

augmentedtree.use_mappingtree_schemas (*schemas, override_existing: bool = False)
Registers (JSON-)schemas for a MappingTreeltem for global use.

Raises ValueError —If a schema with the same identifier is already registered.
Parameters
* schemas (List [Dict])— (JSON-)schemas to be registered.

* override_existing (bool) - If True and existing registered schema with the same id
will be overridden.

class augmentedtree.MappingSchema

PRIMARYKEY = 'atree_primekey'
Defines the field from which value should be used as primekey of the MappingTreeltem.

PRIMARYNAME = 'atree_primename'
Defines the field from which value should be used as primename of the MappingTreeltem.

OUTERVALUES = 'atree_outervalues'
Defines the field from which value should be used as primename of the MappingTreeltem.

METAFIELDKEYS = 'atree_metafieldkeys'
Defines the keys of a Mapping item which should be treated as ‘metadata’ of this item. ‘metadata’ is
hidden within the augmented default view.

IDENTIFIER = 'atree_mappingschema'’
This field defines the unique schema identifier by an tuple of (key, value), which has to be found within
the Mapping item.

Optionally if the field only contains a string, it is assumed the Mapping item contains this Map-
pingTree. SCHEMA_IDENTIFIER as a key of an value with a unique name.

META ATTRIBUTES = 'atree.meta_attributes'

class augmentedtree.MappingSchemaBuilder

static construct (identifier: Union[sty, Tuple[str, str]], primarykey: Optional[str] = None, pri-
maryname: Optional[str] = None, outervalues_key: Optional[str] = None,
metafieldkeys: Optional[List[str]] = None, additional_metafieldkeys: Op-
tional[List[str]] = None, meta_attributes: Optional[List[str]] = None) — dict
Construct a schema for MappingTreeltems.

Notes
« If identifier is a single string the mapping to be used by this schema needs a field with the key Map-
pingSchema.IDENTIFIER.

* A mapping item can use outervalues or metafieldkeys therefore outervalues_key always suppress
metafieldkeys and additional_metafieldkeys.

* The identifiers resulting key, primarykey and primaryname are default metafieldkeys if supplied. The
metafieldkeys overrides the default behavior.

3.4. package 33

augmentedtree, Release 0.0a1

* With additional_metafieldkeys additional keys can be defined.

Parameters

e identifier (Union[str, Tuple[str, str]])— A single string or a tuple/list
with 2 strings defines an identifier.

e primarykey (Optional [str])— Defines which key of the mapping should be used
as the tree items primekey.

* primaryname (Optional [str])— Defines which key of the mapping should be used
as the tree items primename.

* outervalues_key (Optional [str]) — Defines the key, which contains the tree
items children/values resulting in a ‘nested-mapping’ tree item.

* metafieldkeys (Optional [List [str]])— Defines the keys, which will be con-
sidered as metadata. All other entries within the mapping will be considered as a
child/value.

* additional_metafieldkeys — Additional keys to metafieldkeys.

* meta_attributes (Optional [List [str]])— Defines which values will be used
as meta attributes for selection via the where method.

Returns A schema for MappingTreeltem(s).

Return type dict

3.4.4 Tree path related

class augmentedtree.core.TreePath (real_path: Union[str, List[str]] = 7, augmented_path:
Union/[str, List[str]] = 7, meta_attributes: List[T] = None)

join (real_path: Union[str, List[str]] = 7, augmented_path: Union[str, List[str]] = ”, meta_attributes:
List[T] = None) — augmentedtree.core.TreePath
Joins the path parts and returns a new AugmentedTreePath.

Notes

If parameter treepath is given, all parameters are overriden by it.
Parameters

* real_path (Union[str, List[str]])— Real path within the nested data struc-
ture of the augmented tree items.

* augmented_path (Union[str, List[str]])— Path defined by the augmenta-
tion; if no schemas are used identical to real_path

* meta_ attributes (List)— Associations of this path part.
Returns Path within augmented tree.
Return type TreePath

augmentedtree.core.normalize_path_of_tree (*treepath)
Normalized a path (str) or parts of a path (List[str]) to ‘/a/path/like/this’.

Parameters *treepath — A single tree path part or multiple tree path parts.

Returns Normalized path ‘/like/this/example’.

34 Chapter 3. Limitations

augmentedtree, Release 0.0a1

Return type str

>>> normalize_path_of_tree("//to/many/delimiters///everywhere//")
'/to/many/delimiters/everywhere'

>>> normalize_path_of_tree("missing/front/delimiter")
'/missing/front/delimiter’

>>> normalize_path_of_tree("/this/path/is/correct™)
'/this/path/is/correct’

>>> normalize_path_of_tree("/unwanted/delimiter/at/the/end/")
'/unwanted/delimiter/at/the/end’

>>> normalize_path_of_tree (None)

[}

>>> normalize_path_of_tree([])

[}

>>> normalize_path_of_tree("//to", "/many/delimiters//", "/everywhere//")
'/to/many/delimiters/everywhere'

>>> normalize_path_of_tree("missing", "front/delimiter™)
'/missing/front/delimiter’

>>> normalize_path_of_tree("this", "path", "is/correct")
'/this/path/is/correct’

>>> normalize_path_of_tree ("unwanted", "delimiter", "at/the/end/")

' /unwanted/delimiter/at/the/end’

>>> normalize_path_of_tree("invalid", "type", [], "within/the/path")
'/invalid/type/within/the/path’

>>> normalize_path_of_tree (None)

[}

>>> normalize_path_of_tree([])
T

3.4. package 35

augmentedtree, Release 0.0a1

36 Chapter 3. Limitations

Index

A

ACollectionTreelItem (class in augmentedtree), 30

AnAugmentedCollection (class in augmentedtree),
30

AnAugmentedTreeltem (class in augmentedtree), 30

ATreeItem (class in augmentedtree), 30

augment_datastructure () (in module augment-
edtree), 31

AugmentedItemSelection (class
edtree), 32

AugmentedTree (class in augmentedtree), 31

C

children (augmentedtree.ATreeltem attribute), 30
construct () (augmentedtree. MappingSchemaBuilder
static method), 33

in augment-

H

has_primekey () (augmentedtree.ATreeltem method),

30

|

IDENTIFIER (augmentedtree.MappingSchema at-
tribute), 33

J

join () (augmentedtree.core.TreePath method), 34

L

LeafType (class in augmentedtree), 32

M

MappingSchema (class in augmentedtree), 33

MappingSchemaBuilder (class in augmentedtree),
33

MappingTreeItem (class in augmentedtree), 31

META_ATTRIBUTES (augmentedtree.MappingSchema
attribute), 33

METAFIELDKEYS (augmentedtree.MappingSchema at-
tribute), 33

N

normalize_path_of_tree () (in module augment-
edtree.core), 34

O

outervalues (augmentedtree.ACollectionTreeltem at-
tribute), 31

OUTERVALUES (augmentedtree.MappingSchema at-
tribute), 33

P

PRIMARYKEY (augmentedtree.MappingSchema
tribute), 33

PRIMARYNAME (augmentedtree.MappingSchema at-
tribute), 33

primekey (augmentedtree.ATreeltem attribute), 30

primename (augmentedtree.ATreeltem attribute), 30

primevalue (augmentedtree.ATreeltem attribute), 30

print_atree () (in module augmentedtree), 32

R

real_key (augmentedtree.ATreeltem attribute), 30
RegularExpressionPart (class in augmentedtree),
32

at-

S

SequenceTreeltem (class in augmentedtree), 31

T

TreePath (class in augmentedtree.core), 34

U

use_mappingtree_schema () (in module augment-
edtree), 32

use_mappingtree_schemas ()
mentedtree), 33

(in module aug-

37

augmentedtree, Release 0.0a1

V

ValueTreeItem (class in augmentedtree), 31

38 Index

	Installation
	Purpose of augmentedtree
	Limitations
	Basic Usage Examples
	Basic behavior of AnAugmentedTreeItem
	The nested exemplary data
	Examples on how to
	Working with selections
	Viewing treeitems
	Sorting tree item selections

	Usage of augmentedtree - detailed examples
	Accessing values - ‘Where did I put it again?’
	Usage of Schemas - Getting a quick view on the relevant values
	Use-case of the or-conditional selection

	An-augmented-Tree-Item
	Value (& Sequence)
	Mappings
	Schemas
	Paths within the augmentation

	package
	Augmented tree items
	Selecting values
	Enhancement of Mappings by schemas
	Tree path related

	Index

